

JEE Main – 2025

24th JANUARY 2025 (Evening Shift)

General Instructions

- 1. The test is of **3 hours** duration and the maximum marks is **300**.
- The question paper consists of 3 Subjects (Subject I: Mathematics, Subject II: Physics, Subject III: Chemistry).
 Each Part has two sections (Section 1 & Section 2).
- **3.** Section 1 contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.
- **4. Section 2** contains **5 Numerical Value Type Questions**. The answer to each question is an **integer** ranging from 0 to 999.
- 5. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. inside the examination room/hall.
- 6. On completion of the test, the candidate must hand over the Answer Sheet to the **Invigilator** on duty in the Room/Hall. **However, the candidates are allowed to take away this Test Booklet with them**.

Marking Scheme

- **1. Section 1:** +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.
- 2. Section 2: +4 for correct answer, –1 (negative marking) for incorrect answer, 0 for all other cases.

SU	BJECT	I: MATHER	MATICS					MARKS: 100	
				SE	CTION-	L		;	
This :	section c	ontains 20 Mi	ultiple Choi	e Questions.	Each quest	ion has 4 c	hoices (1), (2)), (3) and (4), out of whic	
ONLY	ONE CH	OICE is correc	t.						
1.		the function		0		-	•	e numbers of the points, ferentiable. Then $m + n$ is	
	(1)	9	(2)	8	(3)	6	(4)	7	
2.	In an	arithmetic pr	ogression, i	f $S_{40} = 1030$	and $S_{12} =$	57 , then S	₃₀ – S ₁₀ is eq	jual to:	
	(1)	515	(2)	525	(3)	510	(4)	505	
3.	Let (2	, 3) be the la	argest open	interval in w	hich the fu	unction $f(x)$	$z = 2 \log_e(x - x)$	2) – x^2 + ax +1 is strictly	
		asing and (<i>b,</i> y decreasing.				which the	e function g($(x) = (x-1)^3(x+2-a)^2$ is	
	(1)	420	(2)	160	(3)	280	(4)	360	
1 .	The n	umber of real	solution(s)	of the equatio	on $x^2 + 3x$	$+2 = \min\left\{ z\right $	x-3 , x+2	is :	
	(1)	0	(2)	1	(3)	3	(4)	2	
5.	The e	The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is (3, 1) is:							
	(1)	5x + 16y =	31		(2)	2) $48x + 25y = 169$			
	(3)	4x + 122y	= 134		(4)	25x + 10	1 <i>y</i> = 176		
3.	If 7 =	$5+\frac{1}{7}(5+\alpha)+$	$\frac{1}{7^2}(5+2\alpha)$	$-\frac{1}{7^3}(5+3\alpha)+$	∞, then	the value of	ofα is:		
	(1)	1	(2)	$\frac{1}{7}$	(3)	$\frac{6}{7}$	(4)	6	
7.	Let th	the points $\left(\frac{11}{2}\right)$	$, \alpha $ lie on α	or inside the t	riangle wit	n sides x +	y = 11, x + 2y	y = 16 and 2x + 3y = 29,	
	Then	the product o	of the smalle	st and the lar	gest values	of α is equ	ual to :		
	(1)	44	(2)	33	(3)	55	(4)	22	
3.	ways,		girls can b	-			-	d 5 girls. The number of oup <i>A</i> and the remaining	
	(1)	8925	(2)	8575	(3)	9100	(4)	8750	
).	Let f	: $(0,\infty) \to \mathbf{R}$	be a functi	on which is	differential	ole at all p	oints of its d	lomain and satisfies the	
	condi	tion $x^2 f'(x)$ =	=2xf(x)+3,	with $f(1) = 4$. Then $2f$	2) is equal	to:		
	(1)	23	(2)	29	(3)	19	(4)	39	

10.	Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be a square matrix of order 2 with entries either 0 or 1. Let <i>E</i> be the event that <i>A</i> is an							
	invertible matrix. Then the probability $P(E)$ is :							
	(1)	$\frac{3}{16}$	(2)	$\frac{3}{8}$	(3)	$\frac{5}{8}$	(4)	$\frac{1}{8}$
11.	Let a	$=3\hat{i}-\hat{j}+2\hat{k}$, $ec{b}=$	$= \vec{a} \times (\hat{i} - $	$2\hat{k}$) and $\vec{c} = \vec{b} \times \vec{b}$	k. Then t	the projection of	$ec{c}-2\hat{j}$ (on \vec{a} is:
	(1)	$2\sqrt{7}$	(2)	$2\sqrt{14}$	(3)	$\sqrt{14}$	(4)	$3\sqrt{7}$
12.	Suppo	se A and B are	the coe	fficients of 30th a	and $12^{ ext{th}}$	terms respective	ely in th	e binomial expansion of
	$(1+x)^{2}$	$^{2n-1}$. If $2A = 5B$, then <i>n</i>	is equal to:				
	(1)	22	(2)	21	(3)	19	(4)	20
13.	If the	e equation of	the	parabola with	vertex	$V\left(\frac{3}{2},3\right)$ and	the o	directrix $x + 2y = 0$ is
	$\alpha x^2 +$	$\beta y^2 - \gamma xy - 30x -$	-60 <i>y</i> +2	$225 = 0$, then α -	$+\beta +\gamma$ is	equal to:		
	(1)	8	(2)	6	(3)	7	(4)	9
14.	The ar	rea of the region	enclosed	d by the curves g	$y = e^{X}, y$	$= e^{x}-1 $ and y-	axis is:	
	(1)	$1 + \log_e 2$	(2)	$\log_e 2$	(3)	$2\log_e 2 - 1$	(4)	$1 - \log_e 2$
15.	Let A	$= \left\{ x \in (0,\pi) - \left\{ \frac{\pi}{2} \right\} \right\}$: log _{(2/}	$ \sin x + \log_{(2/2)}$	$_{\pi)} \cos x $	=2 and		
	$B = \left\{ x \right\}$	$x \ge 0: \sqrt{x}(\sqrt{x}-4)$	$-3 \sqrt{x}$	-2 +6=0. The	$n n(A \cup$	<i>B</i>) is equal to:		
	(1)	2	(2)	4	(3)	8	(4)	6
16.	If the s	system of equation	ons					
	x + 2y	-3z = 2						
	$2x + \lambda$	y + 5z = 5						
	14x + 3	$3y + \mu z = 33$						
	has in	finitely many sol	utions,	then $\lambda + \mu$ is equ	ual to :			
	(1)	10	(2)	13	(3)	11	(4)	12
			$a + \frac{s}{s}$	$\frac{\sin x}{x}$ 1	b			
17.	For so	me $a, b, let f(x)$) = 0	$a \qquad 1 + \frac{\sin x}{1 - \frac$	b	$x \neq 0$, lim $f(x)$	$= \lambda + \mu a$	+ vb. Then $(\lambda + \mu + v)^2$ is
				x 1	$h + \frac{\sin x}{2}$	$x \rightarrow 0$	·	+ vb . Then $(\lambda + \mu + v)^2$ is
				~ 1	x			
	equal 1 (1)	36	(2)	16	(3)	25	(4)	9
18.		$\beta > \gamma > 0$, then th			(3)	20	(4)	9
		(-)	-	-) ((1	2)		
	\cot^{-1}	$\left\{\beta + \frac{(1+\beta^{-})}{(\alpha-\beta)}\right\} + co^{-1}$	$t^{-1} \left\{ \gamma + \frac{1}{2} \right\}$	$\frac{(1+\gamma^2)}{(\beta-\gamma)} \right\} + \cot^{-1} \left\{ -\frac{1}{2} \right\}$	$\alpha + \frac{(1+\alpha)}{(\gamma - \alpha)}$	$\left. \frac{J}{J} \right\}$ is equal to:		
	(1)	π	(2)	$\frac{\pi}{2} - (\alpha + \beta + \gamma)$	(3)	0	(4)	3π

- **19.** Let the position vectors of three vertices of a triangle be $4\vec{p} + \vec{q} 3\vec{r}, -5\vec{p} + \vec{q} + 2\vec{r}$ and $2\vec{p} \vec{q} + 2\vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p} + \vec{q} + \vec{r}}{4}$ and $\alpha \vec{p} + \beta \vec{q} + \gamma \vec{r}$ respectively, then $\alpha + 2\beta + 5\gamma$ is equal to:
 - (1) 1 (2) 3 (3) 4 (4) 6

20. The function
$$f: (-\infty, \infty) \to (-\infty, 1)$$
, defined by $f(x) = \frac{2^{x} - 2^{-x}}{2^{x} + 2^{-x}}$ is:

(1)

- One-one but not onto (2) Both one-one and onto
- (3) Onto but not one-one (4) Neither one-one nor onto

SECTION-2

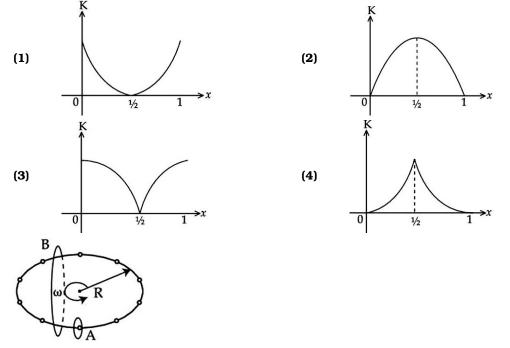
This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- Let P be the image of the point Q(7, -2, 5) in the line $L: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ and R(5, p, q) be a point on L. 21. Then the square of the area of $\triangle PQR$ is _____.
- Let y = y(x) be the solution of the differential equation $2\cos x \frac{dy}{dx} = \sin 2x 4y \sin x, x \in \left(0, \frac{\pi}{2}\right)$. If 22. $y\left(\frac{\pi}{3}\right) = 0$, then $y'\left(\frac{\pi}{4}\right) + y\left(\frac{\pi}{4}\right)$ is equal to _____.
- 23. Number of functions $f: \{1, 2, ..., 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to ______
- Let $H_1: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and $H_2: -\frac{x^2}{a^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$ 24. and $12\sqrt{5}$ respectively. Let their ecentricities be $e_1 = \sqrt{\frac{5}{2}}$ and e_2 respectively. If the product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to _____.

25. If
$$\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} dx = x\sqrt{x^2 + x + 1} + \alpha\sqrt{x^2 + x + 1} + \beta \log_e \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C$$
, where *C* is the constant of integration, then $\alpha + 2\beta$ is equal to

of integration, then $\alpha + 2\beta$ is equal to _

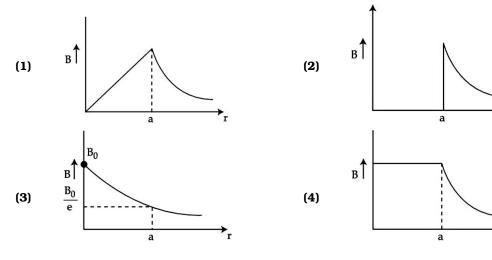
SUBJECT II: PHYSICS


MARKS: 100

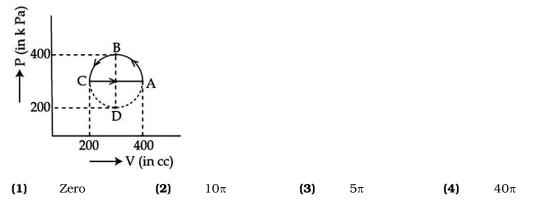
SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.

26. A particle oscillates along the *x*-axis according to the law, $x(t) - x_0 \sin^2\left(\frac{t}{2}\right)$ where $x_0 = 1m$. The kinetic


energy (K) of the particle as a function of x is correctly represented by the graph.

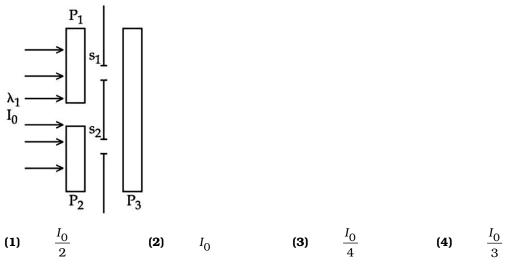
N equally spaced charges each of value q, are placed on a circle of radius *R*. The circle rotates about its axis with an angular velocity ω as shown in the figure. A bigger Amperian loop *B* encloses the whole circle where as a smaller Amperian loop *A* encloses a small segment. The difference between enclosed currents, $I_A - I_B$, for the given Amperian loops is:


(1)
$$\frac{2\pi}{N}q\omega$$
 (2) $\frac{N}{\pi}q\omega$ (3) $\frac{N}{2\pi}q\omega$ (4) $\frac{N^2}{2\pi}q\omega$

28. A long straight wire of a circular cross-section with radius 'a' carries a steady current *I*. The current *I* is uniformly distributed across this cross-section. The plot of magnitude of magnetic field *B* with distance *r* from the centre of the wire is given by:

27.

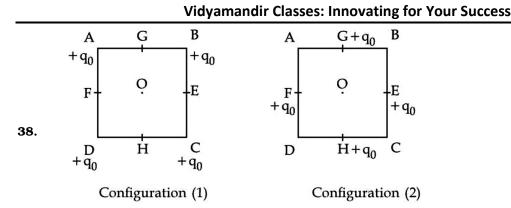
29. The magnitude of heat exchanged by a system for the given cyclic process *ABCA* (as shown in figure) is (in SI unit)


A small uncharged conducting sphere is placed in contact with an identical sphere but having $4 \times 10^{-8}C$ charge and then removed lo a distance such that the force of repulsion between them is $9 \times 10^{-3}N$. The distance between them is (Take $\frac{1}{4\pi \epsilon_0}$ as 9×10^9 in SI units)

(1) 2 cm (2) 1 cm (3) 4 cm (4) 3 cm

31. The position vector of a moving body at any instant of time is given as $\vec{r} = (5t^2\hat{i} - 5t\hat{j})m$. The magnitude and direction of velocity at t = 2s is:

- (1) $5\sqrt{15}$ m/s, making an angle of tan⁻¹4 with -ve Y axis
- (2) $5\sqrt{17}$ m/s, making an angle of $\tan^{-1}4$ with -ve Y axis
- (3) $5\sqrt{15}$ m/s, making an angle of $\tan^{-1} 4$ with +ve X axis
- (4) $5\sqrt{17}$ m/s, making an angle of tan⁻¹ 4 with +ve X axis
- **32.** In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of P_1 and P_2 are orthogonal to each other. The polarizer P_3 covers both the slits with its transmission axis at 45° to those of P_1 and P_2 . An unpolarized light of wavelength λ and intensity I_0 is incident on P_1 and P_2 . The intensity at a point after P_3 where the path difference between the light λ


waves from
$$s_1$$
 and s_2 is $\frac{\lambda}{3}$, is:

		V	iayama	ndir Classes: I	nnovatii	ig for Your Su	ccess			
3.	In pho	In photoelectric effect, the stopping potential $(V_0)v/s$ frequency (v) curve is plotted.								
	(h is t	(<i>h</i> is the Planck's constant and ϕ_0 is work function of metal)								
	(A)	V ₀ v/sv is li	near							
	(B)	The slope of V_0 v/s v curve $=\frac{\phi_0}{h}$								
	(C)	<i>h</i> constant is related to the slope of V_0 v/s v line								
	(D)	(D) The value of electric charge of electron is not required to determine <i>h</i> using the V_0 v/s v curve								
	(E)	(E) The work function can be estimated without knowing the value of <i>h</i> .								
	Choos	Choose the correct answer from the options given below:								
	(1)	(A), (B) and (C	c) only		(2)	(D) and (E) or	nly			
	(3)	(C) and (D) on	ıly		(4)	(A), (C) and (I	E) only			
4.	A pho	tograph of a lan	dscape is	s captured by a	drone ca	mera at a heigł	1t of 18 k	m. The size of the camer		
		s 2 cm × 2 cm a n the drone cam		area of the land	lscape ph	otographed is	400 km ²	² . The focal length of th		
	(1)	0.9 cm	(2)	1.8 cm	(3)	2.8 cm	(4)	2.5 cm		
5.	Arran	ge the following	in the as	scending order o	of waveler	ıgth (λ):				
	(A)	Microwaves (2	λ ₁)		(B)	Ultraviolet ra	ays (λ_2)			
	(C)	Infrared rays	(λ ₃)		(D)	X-rays (λ_4)				
	Choos	Choose the most appropriate answer from the options given below:								
	(1)	$\lambda_4 < \lambda_3 < \lambda_1 < $	$<\lambda_2$		(2)	$\lambda_4 < \lambda_2 < \lambda_3$	$<\lambda_1$			
	(3)	$\lambda_4 < \lambda_3 < \lambda_2$	$<\lambda_1$		(4)	$\lambda_3 < \lambda_4 < \lambda_2$	$<\lambda_1$			
6.	5. Young's double slit interference apparatus is immersed in a liquid of refractive index 1.44, separation of 1.5 mm. The slits are illuminated by a parallel beam of light whose wavelengt 690 nm. The fringe-width on a screen placed behind the plane of slits at a distance of 0.72 m,					hose wavelength in air i				
	(1)	0.63 mm	(2)	0.33 mm	(3)	0.46 mm	(4)	0.23 mm		
7.	The o	utput of the circ	uit is lov	v (zero) for:						
	Х — Ү —	\supset	-	\rightarrow						
	(A)	X = 0, Y = 0								
	(B)	X = 0, Y = 1								
	(C)	X = 1, Y = 0								
		(D) $X = 1, Y = 1$								

Choose the **correct** answer from the options given below:

(1)	(A), (B) and (C) only	(2)	(B), (C) and (D) only

In the first configuration (1) as shown in the figure, four identical charges (q_0) are kept at the corners A, B, C and D of square of side length 'a'. In the second configuration (2), the same charges are shifted to mid points G, E, H and F, of the square. If $K = \frac{1}{4\pi \epsilon_0}$, the difference between the potential energies of configuration (2) and (1) is given by:

(1)
$$\frac{Kq_0^2}{a}(4-2\sqrt{2})$$
 (2) $\frac{Kq_0^2}{a}(4\sqrt{2}-2)$

(3)
$$\frac{Kq_0^2}{a}(3-\sqrt{2})$$
 (4) $\frac{Kq_0^2}{a}(3\sqrt{2}-2)$

39. A solid sphere is rolling without slipping on a horizontal plane. The ratio of the linear kinetic energy of the centre of mass of the sphere and rotational kinetic energy is:

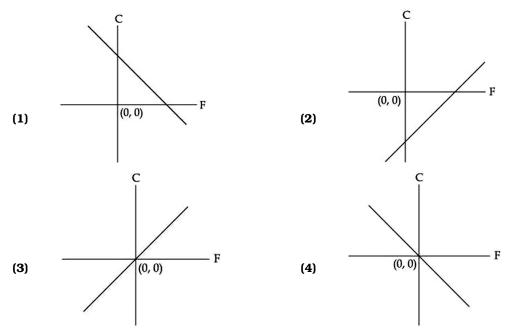
(1)
$$\frac{4}{3}$$
 (2) $\frac{5}{2}$ (3) $\frac{2}{5}$ (4) $\frac{3}{4}$

40. The energy E and momentum p of a moving body of mass m are related by some equation. Given that c represents the speed of light, identify the correct equation

(1) $E^2 = pc^2 + m^2c^2$ (2) $E^2 = p^2c^2 + m^2c^4$

(3)
$$E^2 = pc^2 + m^2 c^4$$
 (4) $E^2 = p^2 c^2 + m^2 c^2$

- **41.** A solid sphere and a hollow sphere of the same mass and of same radius are rolled on an inclined plane. Let the time taken to reach the bottom by the solid sphere and the hollow sphere be t_1 and t_2 , respectively, then:
 - (1) $t_1 > t_2$ (2) $t_1 = 2t_2$


(3)
$$t_1 = t_2$$
 (4) $t_1 < t_2$

42. The temperature of a body in air falls from 40°C to 24°C in 4 minutes. The temperature of the air is 16°C. The temperature of the body in the next 4 minutes will be :

(1)
$$\frac{42}{3}$$
°C (2) $\frac{56}{3}$ °C

(3)
$$\frac{14}{3}$$
°C (4) $\frac{28}{3}$ °C

43. Which of the following figure represents the relation between Celsius and Fahrenheit temperatures?

44. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : A electron in a certain region of uniform magnetic field is moving with constant velocity in a straight line path.

Reason (R) : The magnetic field in that region is along the direction of velocity of the electron.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- 45. Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).

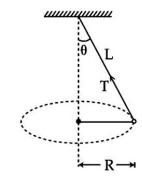
Assertion (A) : In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.

Reason (R) : Free expansion of an ideal gas is an irreversible and an adiabatic process.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) (A) is false but (R) is true

SECTION-2


This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

46. A tightly wound long solenoid carries a current of 1.5 A. An electron is executing uniform circular motion inside the solenoid with a time period of 75 ns. The number of turns per metre in the solenoid is

[Take mass of electron $m_e = 9 \times 10^{-31} kg$, charge of electron $|q_e| = 1.6 \times 10^{-19} C$,

$$\mu_0 = 4\pi \times 10^{-7} \frac{N}{A^2}, 1ns = 10^{-9} s$$

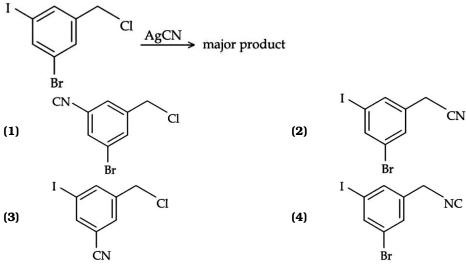
- **47.** The increase in pressure required to decrease the volume of a water sample by 0.2% is $P \times 10^5 Nm^{-2}$. Bulk modulus of water is $2.15 \times 10^9 Nm^{-2}$. The value of *P* is _____.
- **48.** Acceleration due to gravity on the surface of earth is 'g'. If the diameter of earth is reduced to one third of its original value and mass remains unchanged, then the acceleration due to gravity on the surface of the earth is _____ g.
- **49.** The ratio of the power of a light source S_1 to that the light source S_2 is 2. S_1 is emitting 2×10^{15} photons per second at 600 nm. If the wavelength of the source S_2 is 300 nm, then the number of photons per second emitted by S_2 is _____ $\times 10^{14}$.

50.

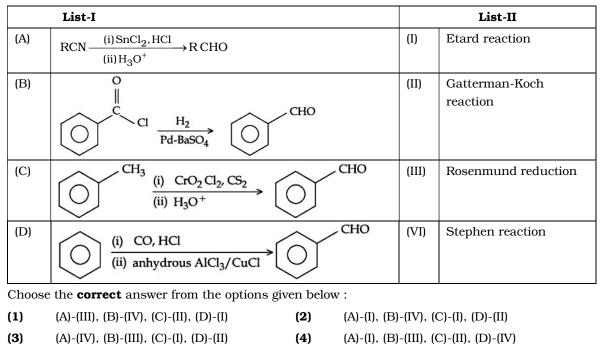
A string of length *L* is fixed at one end and carries a mass of *M* at the other end. The mass makes $\left(\frac{3}{\pi}\right)$ rotations per second about the vertical axis passing through end of the string as shown. The tension in the string is *ML*.

SUBJECT III: CHEMISTRY

MARKS: 100


SECTION-1

This section contains 20 Multiple Choice Questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE CHOICE is correct.


- **51.** Identify correct statement/s:
 - (A) $-OCH_3$ and $-NHCOCH_3$ are activating group.
 - **(B)** –CN and –OH are meta directing group.
 - (C) $-CN \text{ and } -SO_3H$ are meta directing group.
 - **(D)** Activating groups act as ortho and para directing groups.
 - **(E)** Halides are activating groups.

Choose the **correct** answer from the options given below :

- (1) (A), (B) and (E) only (2) (A), only
- (3) (A), (C) and (D) only (4) (A) and (C) only
- **52.** The structure of the major product formed in the following reaction is :

53. Match **List-I** with **List-II**.

	List-I	List-II
(A)	Adenine	
(B)	Cytosine	(II) H ₃ C NH NH H
(C)	Thymine	(III) NH ₂ N N N N H
(D)	Uracil	(VI) NH ₂ N N H

54. Match **List-I** with **List-II**.

Choose the **correct** answer from the options given below :

(1)	(A)-(IV), (B)-(III), (C)-(II), (D)-(I)	(2)	(A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(3)	(A)-(III), (B)-(I), (C)-(IV), (D)-(II)	(4)	(A)-(III), (B)-(IV), (C)-(I), (D)-(II)

55. Given below are two statements :

Statement (I): Experimentally determined oxygen-oxygen bond lengths in the O_3 are found to be same and the bond length is greater than that of a O = O (double bond) but less than that of a single (O – O) bond.

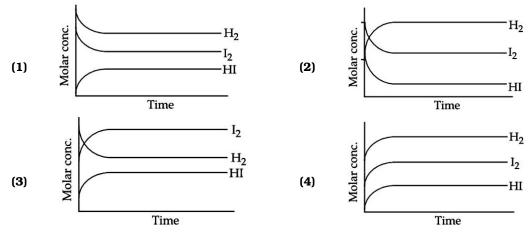
Statement (II) : The strong lone pair-lone pair repulsion between oxygen atoms is solely responsible for the fact that the bond length in ozone is smaller than that of a double bond (O = O) but more than that of a single bond (O = O).

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are false.
- (2) Both **Statement I** and **Statement II** are true.
- (3) **Statement I** is false but **Statement II** is true.
- (4) **Statement I** is true but **Statement II** is false.

56.

The elemental composition of a compound is 54.2% C, 9.2% H and 36.6% O. If the molar mass of the compound is $132 \,\mathrm{g}\,\mathrm{mol}^{-1}$, the molecular formula of the compound is:


[Given: The relative atomic mass of C : H : O = 12 : 1 : 16]

(1) $C_4H_8O_2$ (2) $C_6H_{12}O_3$ (3) $C_4H_9O_3$ (4) $C_6H_{12}O_6$

57. For the reaction,

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

Attainment of equilibrium is predicted correctly by:

The conditions and consequence that favours the $t_{2g}^3 e_g^1$ configuration in a metal complex are : **58**.

- (1) weak field ligand, low spin complex
- weak field ligand, high spin complex
- (3) strong field ligand, low spin complex (4)
- strong field ligand, high spin complex
- Which of the following mixing of 1M base and 1M acid leads to the largest increase in temperature ? 59.

(2)

- 50 mL HCl and 20 mL NaOH (1)
- (3) 30 mL CH₃COOH and 30 mL NaOH (4)
- $45~\mathrm{mL}~\mathrm{CH}_3\mathrm{COOH}$ and $25~\mathrm{mL}~\mathrm{NaOH}$ (2)
 - 30 mL HCl and 30 mL NaOH

60. Match List-I with List-II.

List-I			List-II				
ť	Transition metal ion)	(spin only magnetic moment (B.M.))					
(A)	Ti ³⁺	(I)	3.87				
(B)	V^{2+}	(II)	0.00				
(C)	Ni ²⁺	(III)	1.73				
(D)	Sc^{3+}	(VI)	2.84				

Choose the **correct** answer from the options given below :

- (2) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (3) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)

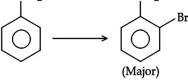
(4) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)

 $\mathrm{S}(g) + \frac{3}{2}\mathrm{O}_2(g) \to \mathrm{SO}_3(g) + 2x\,\mathrm{kcal}$ 61.

 $SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) + y \text{ kcal}$

The heat of formation of $SO_2(g)$ is given by:

(A)-(III), (B)-(I), (C)-(IV), (D)-(II)

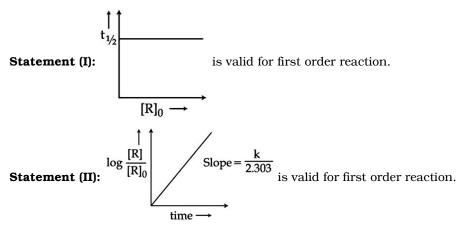

(1)
$$y - 2x \text{ kcal}$$
 (2) $\frac{2x}{y} \text{ kcal}$ (3) $2x + y \text{ kcal}$ (4) $x + y \text{ kcal}$

62. Find the compound 'A' from the following reaction sequences.

$$A \xrightarrow{aqua-regia} B \xrightarrow{(1) \text{KNO}_2 / \text{NH}_4 \text{OH}} \text{yellow ppt}$$
(1) MnS (2) ZnS (3) NiS (4) CoS

(1)

63. The successive 5 ionisation energies of an element are 800, 2427, 3658, 25024 and 32824 kJ/mol, respectively. By using the above values predict the group in which the above element is present:
(1) Group 2 (2) Group 4 (3) Group 14 (4) Group 13
64. For reaction
NH₂ NH₂



The correct order of set of reagents for the above conversion is :

- (1) $Ac_2O, Br_2, H_2O(\Delta), NaOH$ (2) $H_2SO_4, Ac_2O, Br_2, H_2O(\Delta), NaOH$
- (3) $\operatorname{Br}_2 | \operatorname{FeBr}_3, \operatorname{H}_2O(\Delta), \operatorname{NaOH}$

(4)
$$Ac_2O, H_2SO_4, Br_2, NaOH$$

65. Given below are two statements :

In the light of the above statements, choose the **correct** answer from the options given below :

(1) **Statement I** is true but **Statement II** is false

(2) Statement I is false but Statement II is true

(3) Both **Statement I** and **Statement II** are true

(4) Both **Statement I** and **Statement II** are false

66. For hydrogen atom, the orbital/s with lowest energy is/are :

(A) 4s (B) $3p_x$ (C) $3d_{x^2-y^2}$

(D) $3d_{z^2}$ (E) $4p_z$

Choose the **correct** answer from the options given below:

- (1) (A) only (2) (A) and (E) only
- (3) (B), (C) and (D) only (4) (B) only

67.

When Ethane-1,2-diamine is added progressively to an aqueous solution of Nickel (II) chloride, the sequence of colour change observed will be :

- (1) Violet \rightarrow Blue \rightarrow Pale Blue \rightarrow Green
- (2) Pale Blue \rightarrow Blue \rightarrow Violet \rightarrow Green
- (3) Green \rightarrow Pale Blue \rightarrow Blue \rightarrow Violet
- (4) Pale Blue \rightarrow Blue \rightarrow Green \rightarrow Violet

68. Given below are two statements :

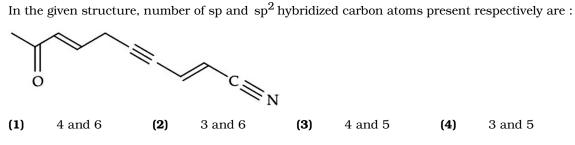
Statement (I) : The first ionization energy of Pb is greater than that of Sn.

Statement (II) : The first ionization energy of Ge is greater than that of Si.

In the light of the above statements, choose the $\mathbf{correct}$ answer from the options given below :

- (1) Both **Statement I** and **Statement II** are false
- (2) Both **Statement I** and **Statement II** are true
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false

69. Based on the data given below :


$$E^{\circ}_{Cr_2O_7^{2-}/Cr^{3+}} = 1.33V$$
 $E^{\circ}_{Cl_2/Cl^{-}} = 1.36V$

$$E^{\circ}_{MnO^-_4/Mn^{2+}} = 1.51\,V \quad E^{\circ}_{Cr^{3+}/Cr} = -0.74\,V$$

The strongest reducing agent is:

(1)
$$Mn^{2+}$$
 (2) Cl^- (3) Cr (4) MnO_4^-

70. In

SECTION-2

This section contains Five (05) Numerical Value Type Questions. The answer to each question is an integer ranging from 0 to 999.

- **71.** The hydrocarbon (X) with molar mass 80 g mol⁻¹ and 90% carbon has ______ degree of unsaturation.
- **72.** In Carius method of estimation of halogen, 0.25 g of an organic compound gave 0.15 g of silver bromide (AgBr). The percentage of Bromine in the organic compound is $___ \times 10^{-1}\%$ (Nearest integer).

(Given: Molar mass of Ag is 108 and Br is 80 g mol^{-1})

- **73.** Consider a complex reaction taking place in three steps with rate constants k_1, k_2 and k_3 respectively. The overall rate constant k is given by the expression $k = \sqrt{\frac{k_1k_3}{k_2}}$. If the activation energies of the three steps are 60, 30 and 10 kJ mol⁻¹ respectively, then the overall energy of activation in kJ mol⁻¹ is ______. (Nearest integer)
- **74.** The possible number of stereoisomers for 5-phenylpent-4-en-2-ol is _____.
- **75.** The observed and normal molar masses of compound MX_2 are 65.6 and 164 respectively. The percent degree of ionisation of MX_2 is ______. %, (Nearest integer)